Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics
Creator
Aguas, Ricardo
Gomes, M
Ferreira, Marcelo
Corder, Rodrigo
Gabriela, M
»more»
source
MedRxiv
abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads, the susceptible subpopulation declines causing the rate at which new infections occur to slow down. Variation in individual susceptibility or exposure to infection exacerbates this effect. Individuals that are more susceptible or more exposed tend to be infected and removed from the susceptible subpopulation earlier. This selective depletion of susceptibles intensifies the deceleration in incidence. Eventually, susceptible numbers become low enough to prevent epidemic growth or, in other words, the herd immunity threshold is reached. Here we fit epidemiological models with inbuilt distributions of susceptibility or exposure to SARS-CoV-2 outbreaks to estimate basic reproduction numbers (R_0) alongside coefficients of individual variation (CV) and the effects of containment strategies. Herd immunity thresholds are then calculated as 1-(1/R_0 )^(1/((1+CV^2 ) )) or 1-(1/R_0 )^(1/((1+2CV^2 ) )), depending on whether variation is on susceptibility or exposure. Our inferences result in herd immunity thresholds around 10-20%, considerably lower than the minimum coverage needed to interrupt transmission by random vaccination, which for R_0 higher than 2.5 is estimated above 60%. We emphasize that the classical formula, 1-1/R_0 , remains applicable to describe herd immunity thresholds for random vaccination, but not for immunity induced by infection which is naturally selective. These findings have profound consequences for the governance of the current pandemic given that some populations may be close to achieving herd immunity despite being under more or less strict social distancing measures.
has issue date
2020-07-24
(
xsd:dateTime
)
bibo:doi
10.1101/2020.07.23.20160762
has license
medrxiv
sha1sum (hex)
f9989fce0ece5629bf577c22565981f6ced7a101
schema:url
https://doi.org/10.1101/2020.07.23.20160762
resource representing a document's title
Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics
resource representing a document's body
covid:f9989fce0ece5629bf577c22565981f6ced7a101#body_text
is
schema:about
of
named entity 'basic'
named entity 'epidemic'
named entity 'variation'
named entity 'variation'
named entity 'numbers'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 6
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software