Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Misinformation Has High Perplexity
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Misinformation Has High Perplexity
Creator
Bang, Yejin
Fung, Pascale
Lee, Nayeon
Madotto, Andrea
source
ArXiv
abstract
Debunking misinformation is an important and time-critical task as there could be adverse consequences when misinformation is not quashed promptly. However, the usual supervised approach to debunking via misinformation classification requires human-annotated data and is not suited to the fast time-frame of newly emerging events such as the COVID-19 outbreak. In this paper, we postulate that misinformation itself has higher perplexity compared to truthful statements, and propose to leverage the perplexity to debunk false claims in an unsupervised manner. First, we extract reliable evidence from scientific and news sources according to sentence similarity to the claims. Second, we prime a language model with the extracted evidence and finally evaluate the correctness of given claims based on the perplexity scores at debunking time. We construct two new COVID-19-related test sets, one is scientific, and another is political in content, and empirically verify that our system performs favorably compared to existing systems. We are releasing these datasets publicly to encourage more research in debunking misinformation on COVID-19 and other topics.
has issue date
2020-06-08
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
e764597776aee7093aee356c45bcf5a60b5a6561
resource representing a document's title
Misinformation Has High Perplexity
resource representing a document's body
covid:e764597776aee7093aee356c45bcf5a60b5a6561#body_text
is
schema:about
of
named entity 'political'
named entity 'claims'
named entity 'manner'
named entity 'sentence'
named entity 'COVID-19'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software