Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Fabrication and Characterization of In Situ Zn-TiB2 Nanocomposite
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Fabrication and Characterization of In Situ Zn-TiB2 Nanocomposite
Creator
Guan, Zeyi
Li, Xiaochun
Yao, Gongcheng
Zeng, Yuxin
source
Elsevier
abstract
Abstract Zinc (Zn) matrix composite has been newly discovered categories of biodegradable materials. With a combination of chemical stability, thermal stability and biocompatibility, ceramic nanoparticles outperformed intermetallics of zinc alloys with inherent advantages of retaining a proper corrosion rate and an exceptional ductility. Compared with Zn alloys, Zn matrix nanocomposites showed an unprecedented strengthening without sacrifices of corrosion rate, which were introduced by intermetallics. In this work, in situ titanium diboride (TiB2) reinforced Zn nanocomposite was prepared via a few cost-effective and economical methods: flux-assisted synthesis (FAS), ultrasound-assisted nanoparticle homogenization and hot rolling. 3 vol.% of TiB2 nanoparticles were synthesized with an average size of 454nm, followed by molten salt assisted ultrasound homogenization and hot rolling. Hot-rolled (HR) Zn-TiB2 performed high strength and high ductility, mostly due to precipitation strengthening (Orowan strengthening). Yield stress (YS) and ultimate tensile stress (UTS) increased by 90% and 45%, respectively, while the elongation to failure retained 23%. The mechanical performance of Zn-TiB2 made it promise to serve as an innovative biodegradable material for load-bearing applications.
has issue date
2020-12-31
(
xsd:dateTime
)
bibo:doi
10.1016/j.promfg.2020.05.055
has license
els-covid
sha1sum (hex)
e5253a4eae38486adac0fca0f1f6f03a53097358
schema:url
https://doi.org/10.1016/j.promfg.2020.05.055
resource representing a document's title
Fabrication and Characterization of In Situ Zn-TiB2 Nanocomposite
schema:publication
Procedia Manufacturing
resource representing a document's body
covid:e5253a4eae38486adac0fca0f1f6f03a53097358#body_text
is
schema:about
of
named entity 'advantages'
named entity 'mechanical'
named entity 'Zinc'
named entity 'TiB2'
named entity 'FAS'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 3
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software