Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
COVID-19: A Data-Driven Mean-Field-Type Game Perspective
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
COVID-19: A Data-Driven Mean-Field-Type Game Perspective
Creator
Tembine, Hamidou
source
MedRxiv
abstract
In this article, a class of mean-field-type games with discrete-continuous state spaces is considered. We establish Bellman systems which provide sufficiency conditions for mean-field-type equilibria in state-and-mean-field-type feedback form. We then derive unnormalized master adjoint systems (MASS). The methodology is shown to be flexible enough to capture multi-class interaction in epidemic propagation in which multiple authorities are risk-aware atomic decision-makers and individuals are risk-aware non-atomic decision-makers. Based on MASS, we present a data-driven modelling and analytics for mitigating Coronavirus Disease 2019 (COVID-19). The model integrates untested cases, age-structure, decision-making, gender, pre-existing health conditions, location, testing capacity, hospital capacity, mobility map on local areas, in-city, inter-cities, and international. It shown that the data-driven model can capture most of the reported data on COVID-19 on confirmed cases, deaths, recovered, number of testing and number of active cases in 66+ countries. The model also reports non-Gaussianity and non-exponential properties in 15+ countries.
has issue date
2020-07-24
(
xsd:dateTime
)
bibo:doi
10.1101/2020.07.23.20160853
has license
medrxiv
sha1sum (hex)
e2c07822562b6fd8fcf088227a593dfa137f43bd
schema:url
https://doi.org/10.1101/2020.07.23.20160853
resource representing a document's title
COVID-19: A Data-Driven Mean-Field-Type Game Perspective
resource representing a document's body
covid:e2c07822562b6fd8fcf088227a593dfa137f43bd#body_text
is
schema:about
of
named entity 'epidemic'
named entity 'Mean-Field'
named entity 'COVID-19'
named entity 'COVID-19'
named entity 'asymptomatic'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 8
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software