Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Modelling and predicting the spatio-temporal spread of Coronavirus disease 2019 (COVID-19) in Italy
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Modelling and predicting the spatio-temporal spread of Coronavirus disease 2019 (COVID-19) in Italy
Creator
Dickson, Maria
Espa, Giuseppe
Giuliani, Diego
Santi, Flavio
source
ArXiv
abstract
Official freely available data about the number of infected at the finest possible level of spatial areal aggregation (Italian provinces) are used to model the spatio-temporal distribution of COVID-19 infections at local level. Data time horizon ranges from 26 February 20020, which is the date when the first case not directly connected with China has been discovered in northern Italy, to 18 March 2020. An endemic-epidemic multivariate time-series mixed-effects generalized linear model for areal disease counts has been implemented to understand and predict spatio-temporal diffusion of the phenomenon. Previous literature has shown that these class of models provide reliable predictions of infectious diseases in time and space. Three subcomponents characterize the estimated model. The first is related to the evolution of the disease over time; the second is characterized by transmission of the illness among inhabitants of the same province; the third remarks the effects of spatial neighbourhood and try to capture the contagion effects of nearby areas. Focusing on the aggregated time-series of the daily counts in Italy, the contribution of any of the three subcomponents do not dominate on the others and our predictions are excellent for the whole country, with an error of 3 per thousand compared to the late available data. At local level, instead, interesting distinct patterns emerge. In particular, the provinces first concerned by containment measures are those that are not affected by the effects of spatial neighbours. On the other hand, for the provinces the are currently strongly affected by contagions, the component accounting for the spatial interaction with surrounding areas is prevalent. Moreover, the proposed model provides good forecasts of the number of infections at local level while controlling for delayed reporting.
has issue date
2020-03-14
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
e112de47dc1b3af7841057fbc398e8f24a2f1eb5
resource representing a document's title
Modelling and predicting the spatio-temporal spread of Coronavirus disease 2019 (COVID-19) in Italy
resource representing a document's body
covid:e112de47dc1b3af7841057fbc398e8f24a2f1eb5#body_text
is
schema:about
of
named entity 'Italy'
named entity 'random effects'
named entity 'Il Sole 24 ore'
named entity 'contagions'
named entity 'province of Lodi'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 3
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software