Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
An Early Warning Approach to Monitor COVID-19 Activity with Multiple Digital Traces in Near Real-Time
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
An Early Warning Approach to Monitor COVID-19 Activity with Multiple Digital Traces in Near Real-Time
Creator
Santillana, Mauricio
Vespignani, Alessandro
Davis, Jessica
Lu, Fred
Hanage, William
»more»
source
ArXiv
abstract
Non-pharmaceutical interventions (NPIs) have been crucial in curbing COVID-19 in the United States (US). Consequently, relaxing NPIs through a phased re-opening of the US amid still-high levels of COVID-19 susceptibility could lead to new epidemic waves. This calls for a COVID-19 early warning system. Here we evaluate multiple digital data streams as early warning indicators of increasing or decreasing state-level US COVID-19 activity between January and June 2020. We estimate the timing of sharp changes in each data stream using a simple Bayesian model that calculates in near real-time the probability of exponential growth or decay. Analysis of COVID-19-related activity on social network microblogs, Internet searches, point-of-care medical software, and a metapopulation mechanistic model, as well as fever anomalies captured by smart thermometer networks, shows exponential growth roughly 2-3 weeks prior to comparable growth in confirmed COVID-19 cases and 3-4 weeks prior to comparable growth in COVID-19 deaths across the US over the last 6 months. We further observe exponential decay in confirmed cases and deaths 5-6 weeks after implementation of NPIs, as measured by anonymized and aggregated human mobility data from mobile phones. Finally, we propose a combined indicator for exponential growth in multiple data streams that may aid in developing an early warning system for future COVID-19 outbreaks. These efforts represent an initial exploratory framework, and both continued study of the predictive power of digital indicators as well as further development of the statistical approach are needed.
has issue date
2020-07-01
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
d5317d87ea62c5d487f54f9c5e1f427ee2a5ad66
resource representing a document's title
An Early Warning Approach to Monitor COVID-19 Activity with Multiple Digital Traces in Near Real-Time
resource representing a document's body
covid:d5317d87ea62c5d487f54f9c5e1f427ee2a5ad66#body_text
is
schema:about
of
named entity 'DATA'
named entity 'FEVER'
named entity 'THERMOMETERS'
named entity 'LAST 6 MONTHS'
named entity 'ELECTRONIC HEALTH RECORDS'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 8
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software