Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Predicting potential drug targets and repurposable drugs for COVID-19 via a deep generative model for graphs
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Predicting potential drug targets and repurposable drugs for COVID-19 via a deep generative model for graphs
Creator
Bandyopadhyay, Sanghamitra
Lall, Snehalika
Mukhopadhyay, Anirban
Ray, Sumanta
Schönhuth, Alexander
source
ArXiv
abstract
Coronavirus Disease 2019 (COVID-19) has been creating a worldwide pandemic situation. Repurposing drugs, already shown to be free of harmful side effects, for the treatment of COVID-19 patients is an important option in launching novel therapeutic strategies. Therefore, reliable molecule interaction data are a crucial basis, where drug-/protein-protein interaction networks establish invaluable, year-long carefully curated data resources. However, these resources have not yet been systematically exploited using high-performance artificial intelligence approaches. Here, we combine three networks, two of which are year-long curated, and one of which, on SARS-CoV-2-human host-virus protein interactions, was published only most recently (30th of April 2020), raising a novel network that puts drugs, human and virus proteins into mutual context. We apply Variational Graph AutoEncoders (VGAEs), representing most advanced deep learning based methodology for the analysis of data that are subject to network constraints. Reliable simulations confirm that we operate at utmost accuracy in terms of predicting missing links. We then predict hitherto unknown links between drugs and human proteins against which virus proteins preferably bind. The corresponding therapeutic agents present splendid starting points for exploring novel host-directed therapy (HDT) options.
has issue date
2020-07-05
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
d22d8ca8776611e41620a5facf8dbf5ee0abe9d0
resource representing a document's title
Predicting potential drug targets and repurposable drugs for COVID-19 via a deep generative model for graphs
resource representing a document's body
covid:d22d8ca8776611e41620a5facf8dbf5ee0abe9d0#body_text
is
schema:about
of
named entity 'manipulate'
named entity 'April'
named entity 'Here'
named entity 'molecule'
named entity 'therapeutic'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 8
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software