Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Knowledge synthesis from 100 million biomedical documents augments the deep expression profiling of coronavirus receptors
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Knowledge synthesis from 100 million biomedical documents augments the deep expression profiling of coronavirus receptors
Creator
Wu, Xiaoying
Anand, Akash
Anyanwu-Ofili, Anuli
Barve, Rakesh
Chilaka, Ramakrishna
»more»
source
BioRxiv
ArXiv
abstract
The COVID-19 pandemic demands assimilation of all available biomedical knowledge to decode its mechanisms of pathogenicity and transmission. Despite the recent renaissance in unsupervised neural networks for decoding unstructured natural languages, a platform for the real-time synthesis of the exponentially growing biomedical literature and its comprehensive triangulation with deep omic insights is not available. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations extracted from unstructured biomedical text, and their triangulation with Single Cell RNA-sequencing based insights from over 25 tissues. Using this platform, we identify intersections between the pathologic manifestations of COVID-19 and the comprehensive expression profile of the SARS-CoV-2 receptor ACE2. We find that tongue keratinocytes, airway club cells, and ciliated cells are likely underappreciated targets of SARS-CoV-2 infection, in addition to type II pneumocytes and olfactory epithelial cells. We further identify mature small intestinal enterocytes as a possible hotspot of COVID-19 fecal-oral transmission, where an intriguing maturation-correlated transcriptional signature is shared between ACE2 and the other coronavirus receptors DPP4 (MERS-CoV) and ANPEP (α-coronavirus). This study demonstrates how a holistic data science platform can leverage unprecedented quantities of structured and unstructured publicly available data to accelerate the generation of impactful biological insights and hypotheses. The nferX Platform Single-cell resource - https://academia.nferx.com/
has issue date
2020-03-28
(
xsd:dateTime
)
2020-03-29
(
xsd:dateTime
)
bibo:doi
10.1101/2020.03.24.005702
has license
biorxiv
arxiv
sha1sum (hex)
d1dde1df11f93e8eae0d0b467cd0455afdc5b98c
schema:url
https://doi.org/10.1101/2020.03.24.005702
resource representing a document's title
Knowledge synthesis from 100 million biomedical documents augments the deep expression profiling of coronavirus receptors
schema:publication
bioRxiv
resource representing a document's body
covid:d1dde1df11f93e8eae0d0b467cd0455afdc5b98c#body_text
is
schema:about
of
named entity 'biological'
named entity 'club cells'
named entity 'accelerate'
named entity 'hypotheses'
named entity 'exponentially growing'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 9
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software