Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Uncovering Hidden Dependency in Weighted Networks via Information Entropy
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Uncovering Hidden Dependency in Weighted Networks via Information Entropy
Creator
Lee, Eun
Lee, Mi
Lee, Sang
Jeong, Hawoong
Lee, Deok-Sun
»more»
source
ArXiv
abstract
Interactions between elements, which are usually represented by networks, have to delineate potentially unequal relationships in terms of their relative importance or direction. The intrinsic unequal relationships of such kind, however, are opaque or hidden in numerous real systems. For instance, when a node in a network with limited interaction capacity spends its capacity to its neighboring nodes, the allocation of the total amount of interactions to them can be vastly diverse. Even if such potentially heterogeneous interactions epitomized by weighted networks are observable, as a result of the aforementioned ego-centric allocation of interactions, the relative importance or dependency between two interacting nodes can only be implicitly accessible. In this work, we precisely pinpoint such relative dependency by proposing the framework to discover hidden dependent relations extracted from weighted networks. For a given weighted network, we provide a systematic criterion to select the most essential interactions for individual nodes based on the concept of information entropy. The criterion is symbolized by assigning the effective number of neighbors or the effective out-degree to each node, and the resultant directed subnetwork decodes the hidden dependent relations by leaving only the most essential directed interactions. We apply our methodology to two time-stamped empirical network data, namely the international trade relations between nations in the world trade web (WTW) and the network of people in the historical record of Korea, Annals of the Joseon Dynasty (AJD). Based on the data analysis, we discover that the properties of mutual dependency encoded in the two systems are vastly different.
has issue date
2020-08-25
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
d1c81a70702b8a8dd6367aa636bfa3acd7ac3780
resource representing a document's title
Uncovering Hidden Dependency in Weighted Networks via Information Entropy
resource representing a document's body
covid:d1c81a70702b8a8dd6367aa636bfa3acd7ac3780#body_text
is
schema:about
of
named entity 'relative'
named entity 'systems'
named entity 'weighted network'
named entity 'observable'
named entity 'positively correlated'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 3
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software