Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Mathematical Modeling and Analysis of COVID-19 pandemic in Nigeria
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Mathematical Modeling and Analysis of COVID-19 pandemic in Nigeria
Creator
Gumel, Abba
Iboi, Enahoro
Ngonghala, Calistus
Sharomi, Oluwaseun
source
MedRxiv
abstract
A novel Coronavirus (COVID-19), caused by SARS-CoV-2, emerged from the Wuhan city of China at the end of 2019, causing devastating public health and socio-economic burden around the world. In the absence of a safe and effective vaccine or antiviral for use in humans, control and mitigation efforts against COVID-19 are focussed on using non-pharmaceutical interventions (aimed at reducing community transmission of COVID-19), such as social (physical)-distancing, community lockdown, use of face masks in public, isolation and contact tracing of confirmed cases and quarantine of people suspected of being exposed to COVID-19. We developed a mathematical model for understanding the transmission dynamics and control of COVID-19 in Nigeria, one of the main epicenters of COVID-19 in Africa. Rigorous analysis of the Kermack-McKendrick-type compartmental epidemic model we developed, which takes the form of a deterministic system of nonlinear differential equations, reveal that the model has a continuum of disease-free equilibria which is locally-asymptotically stable whenever a certain epidemiological threshold, called the it control reproduction (denoted by Rc), is less than unity. The epidemiological implication of this result is that the pandemic can be effectively controlled (or even eliminated) in Nigeria if the control strategies implemented can bring (and maintain) the epidemiological threshold (Rc) to a value less than unity. The model, which was parametrized using COVID-19 data published by Nigeria Centre for Disease Control (NCDC), was used to assess the community-wide impact of various control and mitigation strategies in the entire Nigerian nation, as well as in two states (Kano and Lagos) within the Nigerian federation and the Federal Capital Territory (FCT Abuja). It was shown that, for the worst-case scenario where social-distancing, lockdown and other community transmission reduction measures are not implemented, Nigeria would have recorded a devastatingly high COVID-19 mortality by April 2021 (in hundreds of thousands). It was, however, shown that COVID-19 can be effectively controlled using social-distancing measures provided its effectiveness level is at least moderate. Although the use of face masks in the public can significantly reduce COVID-19 in Nigeria, its use as a sole intervention strategy may fail to lead to the realistic elimination of the disease (since such elimination requires unrealistic high compliance in face mask usage in the public, in the range of 80% to 95%). COVID-19 elimination is feasible in both the entire Nigerian nation, and the States of Kano and Lagos, as well as the FCT, if the public face masks use strategy (using mask with moderate efficacy, and moderate compliance in its usage) is complemented with a social-distancing strategy. The lockdown measures implemented in Nigeria on March 30, 2020 need to be maintained for at least three to four months to lead to the effective containment of COVID-19 outbreaks in the country. Relaxing, or fully lifting, the lockdown measures sooner, in an effort to re-open the economy or the country, may trigger a deadly second wave of the pandemic.
has issue date
2020-06-02
(
xsd:dateTime
)
bibo:doi
10.1101/2020.05.22.20110387
has license
medrxiv
sha1sum (hex)
d127bbdf91c055afd1b8f58dd92e47631b895f49
schema:url
https://doi.org/10.1101/2020.05.22.20110387
resource representing a document's title
Mathematical Modeling and Analysis of COVID-19 pandemic in Nigeria
resource representing a document's body
covid:d127bbdf91c055afd1b8f58dd92e47631b895f49#body_text
is
schema:about
of
named entity 'NCDC'
named entity 'lead'
named entity 'epidemic model'
named entity 'vaccine'
named entity 'Federal Capital Territory'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 12
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software