Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Improving Coronavirus (COVID-19) Diagnosis using Deep Transfer Learning
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Improving Coronavirus (COVID-19) Diagnosis using Deep Transfer Learning
Creator
Khan, Ahmed
Naz, Saeeda
Razzak, Imran
Rehman, Arshia
Zaib, Ahmad
source
MedRxiv
abstract
Background: Coronavirus disease (COVID-19) is an infectious disease caused by a new virus. Exponential growth is not only threatening lives, but also impacting businesses and disrupting travel around the world. Aim: The aim of this work is to develop an efficient diagnosis of COVID-19 disease by differentiating it from viral pneumonia, bacterial pneumonia and healthy cases using deep learning techniques. Method: In this work, we have used pre-trained knowledge to improve the diagnostic performance using transfer learning techniques and compared the performance different CNN architectures. Results: Evaluation results using K-fold (10) showed that we have achieved state of the art performance with overall accuracy of 98.75% on the perspective of CT and X-ray cases as a whole. Conclusion: Quantitative evaluation showed high accuracy for automatic diagnosis of COVID-19. Pre-trained deep learning models develop in this study could be used early screening of coronavirus, however it calls for extensive need to CT or X-rays dataset to develop a reliable application.
has issue date
2020-04-17
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.11.20054643
has license
medrxiv
sha1sum (hex)
c87263c070e45a7e0957814073f94d3dee040113
schema:url
https://doi.org/10.1101/2020.04.11.20054643
resource representing a document's title
Improving Coronavirus (COVID-19) Diagnosis using Deep Transfer Learning
resource representing a document's body
covid:c87263c070e45a7e0957814073f94d3dee040113#body_text
is
schema:about
of
named entity 'compared'
named entity 'disease'
named entity 'Results'
named entity 'COULD BE'
named entity 'CONCLUSION'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 6
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software