Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Explaining the Bomb-Like Dynamics of COVID-19 with Modeling and the Implications for Policy
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Explaining the Bomb-Like Dynamics of COVID-19 with Modeling and the Implications for Policy
Creator
Yang, Yupeng
Levin, Simon
Klein, Eili
Ma,
Gatalo, Oliver
»more»
source
MedRxiv
abstract
Using a Bayesian approach to epidemiological compartmental modeling, we demonstrate the bomb-like behavior of exponential growth in COVID-19 cases can be explained by transmission of asymptomatic and mild cases that are typically unreported at the beginning of pandemic events due to lower prevalence of testing. We studied the exponential phase of the pandemic in Italy, Spain, and South Korea, and found the R0 to be 2.56 (95% CrI, 2.41-2.71), 3.23 (95% CrI, 3.06-3.4), and 2.36 (95% CrI, 2.22-2.5) if we use Bayesian priors that assume a large portion of cases are not detected. Weaker priors regarding the detection rate resulted in R0 values of 9.22 (95% CrI, 9.01-9.43), 9.14 (95% CrI, 8.99-9.29), and 8.06 (95% CrI, 7.82-8.3) and assumes nearly 90% of infected patients are identified. Given the mounting evidence that potentially large fractions of the population are asymptomatic, the weaker priors that generate the high R0 values to fit the data required assumptions about the epidemiology of COVID-19 that do not fit with the biology, particularly regarding the timeframe that people remain infectious. Our results suggest that models of transmission assuming a relatively lower R0 value that do not consider a large number of asymptomatic cases can result in misunderstanding of the underlying dynamics, leading to poor policy decisions and outcomes.
has issue date
2020-04-07
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.05.20054338
has license
medrxiv
sha1sum (hex)
c5269a7c32a9fd92159d03dc22de1545fcfeb803
schema:url
https://doi.org/10.1101/2020.04.05.20054338
resource representing a document's title
Explaining the Bomb-Like Dynamics of COVID-19 with Modeling and the Implications for Policy
resource representing a document's body
covid:c5269a7c32a9fd92159d03dc22de1545fcfeb803#body_text
is
schema:about
of
named entity 'remain'
named entity 'typically'
named entity 'biology'
named entity 'EVIDENCE'
named entity 'EVENTS'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software