Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
CrisisBERT: a Robust Transformer for Crisis Classification and Contextual Crisis Embedding
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
CrisisBERT: a Robust Transformer for Crisis Classification and Contextual Crisis Embedding
Creator
Blessing, Lucienne
Liu, Junhua
Lim, Kwan
Singhal, Trisha
Wood, Kristin
source
ArXiv
abstract
Classification of crisis events, such as natural disasters, terrorist attacks and pandemics, is a crucial task to create early signals and inform relevant parties for spontaneous actions to reduce overall damage. Despite crisis such as natural disasters can be predicted by professional institutions, certain events are first signaled by civilians, such as the recent COVID-19 pandemics. Social media platforms such as Twitter often exposes firsthand signals on such crises through high volume information exchange over half a billion tweets posted daily. Prior works proposed various crisis embeddings and classification using conventional Machine Learning and Neural Network models. However, none of the works perform crisis embedding and classification using state of the art attention-based deep neural networks models, such as Transformers and document-level contextual embeddings. This work proposes CrisisBERT, an end-to-end transformer-based model for two crisis classification tasks, namely crisis detection and crisis recognition, which shows promising results across accuracy and f1 scores. The proposed model also demonstrates superior robustness over benchmark, as it shows marginal performance compromise while extending from 6 to 36 events with only 51.4% additional data points. We also proposed Crisis2Vec, an attention-based, document-level contextual embedding architecture for crisis embedding, which achieve better performance than conventional crisis embedding methods such as Word2Vec and GloVe. To the best of our knowledge, our works are first to propose using transformer-based crisis classification and document-level contextual crisis embedding in the literature.
has issue date
2020-05-11
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
c4fa1805ed39312a8f2f682231460f9cbda672eb
resource representing a document's title
CrisisBERT: a Robust Transformer for Crisis Classification and Contextual Crisis Embedding
resource representing a document's body
covid:c4fa1805ed39312a8f2f682231460f9cbda672eb#body_text
is
schema:about
of
named entity 'high'
named entity 'embedding'
named entity 'DAMAGE'
named entity 'EVERYDAY'
named entity 'CONVENTIONAL'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software