Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Attention dynamics on the Chinese social media Sina Weibo during the COVID-19 pandemic
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Attention dynamics on the Chinese social media Sina Weibo during the COVID-19 pandemic
Creator
Cui, Hao
Cui, Kertész
Kertész, János
source
ArXiv
abstract
COVID-19 was first detected in Hubei province of China and has had severe impact on the life in the country since then. We investigate how this epidemic has influenced attention dynamics on the biggest Chinese microblogging website Sina Weibo in the period December 16, 2019 - April 17, 2020. We focus on the real-time Hot Search List (HSL), which provides the ranking of the most popular 50 hashtags based on the amount of Sina Weibo searches on them. We show, how the specific events, measures and developments during the epidemic affected the emergence of new hashtags and the ranking on the HSL. A significant increase of COVID-19 related hashtags started to occur on HSL around January 20, 2020, when the transmission of the disease between humans was announced. Then very rapidly a situation was reached, where the participation of the COVID-related hashtags occupied 30-70% of the HSL, however, with changing content. We give an analysis of how the hashtag topics changed during the investigated time span and conclude that there are three periods separated by February 12 and March 12. In period 1, we see strong topical correlations and clustering of hashtags; in period 2, the correlations are weakened, without clustering pattern; in period 3, we see potential of clustering while not as strong as in period 1. To quantify the dynamics of HSL we measured the lifetimes of hashtags on the list and the rank diversity at given ranks. Our observations indicate attention diversification since the COVID-19 outbreak in Mainland China and a higher rank diversity at the top 15 ranks on HSL due to the COVID-19 related hashtags, a drastic attention decay shortly after the outburst and a slower decay for a longer period.
has issue date
2020-08-10
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
bf32f5647aef51af2780c9e6e14f06d679227537
resource representing a document's title
Attention dynamics on the Chinese social media Sina Weibo during the COVID-19 pandemic
resource representing a document's body
covid:bf32f5647aef51af2780c9e6e14f06d679227537#body_text
is
schema:about
of
named entity 'potential'
named entity 'outburst'
named entity 'changing'
named entity 'ATTENTION'
named entity 'PROVIDES'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 7
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software