Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Plasmonically enhanced mid-IR light source based on tunable spectrally and directionally selective thermal emission from nanopatterned graphene
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Plasmonically enhanced mid-IR light source based on tunable spectrally and directionally selective thermal emission from nanopatterned graphene
Creator
Waqas, Muhammad
Leuenberger, Michael
source
ArXiv
abstract
We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to $3000$ cm$^2$V$^{-1}$s$^{-1}$), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet allow for the control and tuning of the thermal emission spectrum in the wavelength regime from 3 $/mu$m to 12 $/mu$m. The LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared (NIR) by a factor of 100. A maximum emission power per area of 11x10^3 W/m$^2$ at $T=2000$ K for a bias voltage of $V=23$ V is achieved by Joule heating. By generalizing Planck's theory and considering the nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in graphene in RPA, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13 $/mu$m and 150 $/mu$m, respectively, providing the opportunity to create phased arrays. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between $12^/circ$ and $80^/circ$ by tuning the Fermi energy. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain (FDTD) calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.
has issue date
2020-05-19
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
bc70846bc89471a3a161bab2976bcf900e365e74
resource representing a document's title
Plasmonically enhanced mid-IR light source based on tunable spectrally and directionally selective thermal emission from nanopatterned graphene
resource representing a document's body
covid:bc70846bc89471a3a161bab2976bcf900e365e74#body_text
is
schema:about
of
named entity 'opportunity'
named entity 'circular'
named entity 'graphene'
named entity 'graphene'
named entity 'emission spectrum'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 10
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software