Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Nowcasting the COVID-19 Pandemic in Bavaria
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Nowcasting the COVID-19 Pandemic in Bavaria
Creator
Bender, Andreas
Höhle, Michael
Katz, Katharina
Günther, Felix
Küchenhoff, Helmut
source
MedRxiv
abstract
To assess the current dynamic of an epidemic it is central to collect information on the daily number of newly diseased cases. This is especially important in real-time surveillance, when one aims at evaluating the effects of interventions on disease spread. Reporting delays between disease onset and case reporting hamper our ability to understand the dynamic of an epidemic when looking at the number of daily reported cases only. Nowcasting can be used to adjust daily case counts for occurred-but-not-yet-reported events. Here, we present a novel application of nowcasting to data on the current COVID-19 pandemic in Bavaria. It is based on a hierarchical Bayesian model that considers changes in the reporting delay distribution associated with the week and weekday of reporting and assumes a smooth epidemic curve. Furthermore, we present a way to estimate the time-dependent case reproduction number R(t) based on predictions of the nowcast. We provide methodological details of the developed approach, illustrate results based on data of the current epidemic, discuss limitations and alternative estimation strategies, and provide code for reproduction or adaption of the nowcasting to data from different regions. Results of the nowcasting approach are reported to the Bavarian health authority and published on a webpage on a daily basis.
has issue date
2020-06-28
(
xsd:dateTime
)
bibo:doi
10.1101/2020.06.26.20140210
has license
medrxiv
sha1sum (hex)
bab5f843be1048447f7a9b35ca7d01ba5dbd0ab6
schema:url
https://doi.org/10.1101/2020.06.26.20140210
resource representing a document's title
Nowcasting the COVID-19 Pandemic in Bavaria
resource representing a document's body
covid:bab5f843be1048447f7a9b35ca7d01ba5dbd0ab6#body_text
is
schema:about
of
named entity 'daily'
named entity 'nowcasting'
named entity 'code'
named entity 'dynamic'
named entity 'data'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software