Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
The challenges of deploying artificial intelligence models in a rapidly evolving pandemic
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
The challenges of deploying artificial intelligence models in a rapidly evolving pandemic
Creator
Hurst, John
Hawkes, David
Hu, Yipeng
Jacob, Joseph
Jm Parker, Geoffrey
»more»
source
ArXiv
abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2, emerged into a world being rapidly transformed by artificial intelligence (AI) based on big data, computational power and neural networks. The gaze of these networks has in recent years turned increasingly towards applications in healthcare. It was perhaps inevitable that COVID-19, a global disease propagating health and economic devastation, should capture the attention and resources of the world's computer scientists in academia and industry. The potential for AI to support the response to the pandemic has been proposed across a wide range of clinical and societal challenges, including disease forecasting, surveillance and antiviral drug discovery. This is likely to continue as the impact of the pandemic unfolds on the world's people, industries and economy but a surprising observation on the current pandemic has been the limited impact AI has had to date in the management of COVID-19. This correspondence focuses on exploring potential reasons behind the lack of successful adoption of AI models developed for COVID-19 diagnosis and prognosis, in front-line healthcare services. We highlight the moving clinical needs that models have had to address at different stages of the epidemic, and explain the importance of translating models to reflect local healthcare environments. We argue that both basic and applied research are essential to accelerate the potential of AI models, and this is particularly so during a rapidly evolving pandemic. This perspective on the response to COVID-19, may provide a glimpse into how the global scientific community should react to combat future disease outbreaks more effectively.
has issue date
2020-05-19
(
xsd:dateTime
)
bibo:doi
10.1038/s42256-020-0185-2
has license
arxiv
sha1sum (hex)
b90482e2b4c30aa9f2329f361b4f09bd07145630
schema:url
https://doi.org/10.1038/s42256-020-0185-2
resource representing a document's title
The challenges of deploying artificial intelligence models in a rapidly evolving pandemic
resource representing a document's body
covid:b90482e2b4c30aa9f2329f361b4f09bd07145630#body_text
is
schema:about
of
named entity 'gaze'
named entity 'The'
named entity 'surveillance'
named entity 'observation'
named entity 'surprising'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software