Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks
Creator
Hirano, Hokuto
Koga, Kazuki
Takemoto, Kazuhiro
source
ArXiv
abstract
Under the epidemic of the novel coronavirus disease 2019 (COVID-19), chest X-ray computed tomography imaging is being used for effectively screening COVID-19 patients. The development of computer-aided systems based on deep neural networks (DNNs) has been advanced, to rapidly and accurately detect COVID-19 cases, because the need for expert radiologists, who are limited in number, forms a bottleneck for the screening. However, so far, the vulnerability of DNN-based systems has been poorly evaluated, although DNNs are vulnerable to a single perturbation, called universal adversarial perturbation (UAP), which can induce DNN failure in most classification tasks. Thus, we focus on representative DNN models for detecting COVID-19 cases from chest X-ray images and evaluate their vulnerability to UAPs generated using simple iterative algorithms. We consider nontargeted UAPs, which cause a task failure resulting in an input being assigned an incorrect label, and targeted UAPs, which cause the DNN to classify an input into a specific class. The results demonstrate that the models are vulnerable to nontargeted and targeted UAPs, even in case of small UAPs. In particular, 2% norm of the UPAs to the average norm of an image in the image dataset achieves>85% and>90% success rates for the nontargeted and targeted attacks, respectively. Due to the nontargeted UAPs, the DNN models judge most chest X-ray images as COVID-19 cases. The targeted UAPs make the DNN models classify most chest X-ray images into a given target class. The results indicate that careful consideration is required in practical applications of DNNs to COVID-19 diagnosis; in particular, they emphasize the need for strategies to address security concerns. As an example, we show that iterative fine-tuning of the DNN models using UAPs improves the robustness of the DNN models against UAPs.
has issue date
2020-05-22
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
b66bea6b669148ec4cf5c498b59cc46bdd1e7c4d
resource representing a document's title
Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks
resource representing a document's body
covid:b66bea6b669148ec4cf5c498b59cc46bdd1e7c4d#body_text
is
schema:about
of
named entity 'focus'
named entity 'demonstrate'
named entity 'case'
named entity 'COVID-19'
named entity 'accurately'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software