Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Screening of Therapeutic Agents for COVID-19 using Machine Learning and Ensemble Docking Simulations
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Screening of Therapeutic Agents for COVID-19 using Machine Learning and Ensemble Docking Simulations
Creator
Chan, Henry
Batra, Rohit
Cherukara, Mathew
Kamath, Ganesh
Ramprasad, Rampi
»more»
source
ArXiv
abstract
The world has witnessed unprecedented human and economic loss from the COVID-19 disease, caused by the novel coronavirus SARS-CoV-2. Extensive research is being conducted across the globe to identify therapeutic agents against the SARS-CoV-2. Here, we use a powerful and efficient computational strategy by combining machine learning (ML) based models and high-fidelity ensemble docking simulations to enable rapid screening of possible therapeutic molecules (or ligands). Our screening is based on the binding affinity to either the isolated SARS-CoV-2 S-protein at its host receptor region or to the Sprotein-human ACE2 interface complex, thereby potentially limiting and/or disrupting the host-virus interactions. We first apply our screening strategy to two drug datasets (CureFFI and DrugCentral) to identify hundreds of ligands that bind strongly to the aforementioned two systems. Candidate ligands were then validated by all atom docking simulations. The validated ML models were subsequently used to screen a large bio-molecule dataset (with nearly a million entries) to provide a rank-ordered list of ~19,000 potentially useful compounds for further validation. Overall, this work not only expands our knowledge of small-molecule treatment against COVID-19, but also provides an efficient pathway to perform high-throughput computational drug screening by combining quick ML surrogate models with expensive high-fidelity simulations, for accelerating the therapeutic cure of diseases.
has issue date
2020-04-08
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
b2c2a76413508be8a53e8b9fba326f6123fbc8c9
resource representing a document's title
Screening of Therapeutic Agents for COVID-19 using Machine Learning and Ensemble Docking Simulations
resource representing a document's body
covid:b2c2a76413508be8a53e8b9fba326f6123fbc8c9#body_text
is
schema:about
of
named entity 'validated'
named entity 'compounds'
named entity 'economic'
named entity 'isolated'
named entity 'expensive'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 7
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software