Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
The birth environment of planetary systems
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
The birth environment of planetary systems
Creator
Parker, Richard
source
ArXiv
abstract
Star and planet formation are inextricably linked. In the earliest phases of the collapse of a protostar a disc forms around the young star and such discs are observed for the first several million years of a star's life. It is within these circumstellar, or protoplanetary, discs that the first stages of planet formation occur. Recent observations from ALMA suggest that planet formation may already be well under way after only 1 Myr of a star's life. However, stars do not form in isolation; they form from the collapse and fragmentation of giant molecular clouds several parsecs in size. This results in young stars forming in groups - often referred to as 'clusters'. In these star-forming regions the stellar density is much higher than the location of the Sun, and other stars in the Galactic disc that host exoplanets. As such, the environment where stars form has the potential to influence the planet formation process. In star-forming regions, protoplanetary discs can be truncated or destroyed by interactions with passing stars, as well as photoevaporation from the radiation fields of very massive stars. Once formed, the planets themselves can have their orbits altered by dynamical encounters - either directly from passing stars or through secondary effects such as the Kozai-Lidov mechanism. In this contribution, I review the different processes that can affect planet formation and stability in star-forming regions. I discuss each process in light of the typical range of stellar densities observed for star-forming regions. I finish by discussing these effects in the context of theories for the birth environment of the Solar System.
has issue date
2020-07-15
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
afd129edd6e471c582c9b8e78ffdc99c74f1d20b
resource representing a document's title
The birth environment of planetary systems
resource representing a document's body
covid:afd129edd6e471c582c9b8e78ffdc99c74f1d20b#body_text
is
schema:about
of
named entity 'orbiting other stars'
named entity 'tidal radius'
named entity 'stars form'
named entity 'binary systems'
named entity 'orbital migration'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 9
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software