Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Regression Analysis of COVID-19 Spread in India and its Different States
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Regression Analysis of COVID-19 Spread in India and its Different States
Creator
Kumar, Ashok
Chauhan, Poonam
Jamdagni, Pooja
source
MedRxiv
abstract
Linear and polynomial regression model has been used to investigate the COVID-19 outbreak in India and its different states using time series epidemiological data up to 26th May 2020. The data driven analysis shows that the case fatality rate (CFR) for India (3.14% with 95% confidence interval of 3.12% to 3.16%) is half of the global fatality rate, while higher than the CFR of the immediate neighbors i.e. Bangladesh, Pakistan and Sri Lanka. Among Indian states, CFR of West Bengal (8.70%, CI: 8.21-9.18%) and Gujrat (6.05%, CI: 4.90-7.19%) is estimated to be higher than national rate, whereas CFR of Bihar, Odisha and Tamil Nadu is less than 1%. The polynomial regression model for India and its different states is trained with data from 21st March 2020 to 19th May 2020 (60 days). The performance of the model is estimated using test data of 7 days from 20th May 2020 to 26th May 2020 by calculating RMSE and % error. The model is then used to predict number of patients in India and its different states up to 16th June 2020 (21 days). Based on the polynomial regression analysis, Maharashtra, Gujrat, Delhi and Tamil Nadu are continue to remain most affected states in India.
has issue date
2020-05-29
(
xsd:dateTime
)
bibo:doi
10.1101/2020.05.29.20117069
has license
medrxiv
sha1sum (hex)
966e614b9292a0c05f81ca3b2336b8f2fecc9d42
schema:url
https://doi.org/10.1101/2020.05.29.20117069
resource representing a document's title
Regression Analysis of COVID-19 Spread in India and its Different States
resource representing a document's body
covid:966e614b9292a0c05f81ca3b2336b8f2fecc9d42#body_text
is
schema:about
of
named entity 'fatality rate'
named entity 'OUTBREAK'
named entity 'TO INVESTIGATE'
named entity 'NATIONAL'
named entity 'Tamil Nadu'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 3
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software