Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
ReCoNet: Multi-level Preprocessing of Chest X-rays for COVID-19 Detection Using Convolutional Neural Networks
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
ReCoNet: Multi-level Preprocessing of Chest X-rays for COVID-19 Detection Using Convolutional Neural Networks
Creator
Ahmed, Sabbir
Hoon Yap, Moi
Kamrul Hasan,
Tan, Maxine
source
MedRxiv
abstract
Life-threatening COVID-19 detection from radiomic features has become a dire need of the present time for infection control and socio-economic crisis management around the world. In this paper, a novel convolutional neural network (CNN) architecture, ReCoNet (residual image-based COVID-19 detection network), is proposed for COVID-19 detection. This is achieved from chest X-ray (CXR) images shedding light on the preprocessing task considered to be very useful for enhancing the COVID-19 fingerprints. The proposed modular architecture consists of a CNN-based multi-level preprocessing filter block in cascade with a multi-layer CNN-based feature extractor and a classification block. A multi-task learning loss function is adopted for optimization of the preprocessing block trained end-to-end with the rest of the proposed network. Additionally, a data augmentation technique is applied for boosting the network performance. The whole network when pre-trained end-to-end on the CheXpert open source dataset, and trained and tested with the COVIDx dataset of 15,134 original CXR images yielded an overall benchmark accuracy, sensitivity, and specificity of 97.48%, 96.39%, and 97.53%, respectively. The immense potential of ReCoNet may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle income countries where RT-PCR labs and/or kits are in a serious crisis.
has issue date
2020-07-11
(
xsd:dateTime
)
bibo:doi
10.1101/2020.07.11.20149112
has license
medrxiv
sha1sum (hex)
8ab178427d5329bab43c76a634d9d76afdaa8846
schema:url
https://doi.org/10.1101/2020.07.11.20149112
resource representing a document's title
ReCoNet: Multi-level Preprocessing of Chest X-rays for COVID-19 Detection Using Convolutional Neural Networks
resource representing a document's body
covid:8ab178427d5329bab43c76a634d9d76afdaa8846#body_text
is
schema:about
of
named entity 'end-to-end'
named entity 'fingerprints'
named entity 'COVID-19'
named entity 'architecture'
named entity 'consists'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 7
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software