Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Integrating Prior Knowledge in Mixed Initiative Social Network Clustering
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Integrating Prior Knowledge in Mixed Initiative Social Network Clustering
Creator
Buono, Paolo
Fekete, Jean-Daniel
Pister, Alexis
Plaisant, Catherine
Valdivia, Paola
source
ArXiv
abstract
We propose a new paradigm---called PK-clustering---to help social scientists create meaningful clusters in social networks. Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to choose algorithms, or to evaluate results taking into account the prior knowledge of the scientists. Our work introduces a new clustering paradigm and a visual analytics user interface that address this issue. It is based on a process that 1) captures the prior knowledge of the scientists as a set of incomplete clusters, 2) runs multiple clustering algorithms (similarly to clustering ensemble methods), 3) visualizes the results of all the algorithms ranked and summarized by how well each algorithm matches the prior knowledge, 5) evaluates the consensus between user-selected algorithms and 6) allows users to review details and iteratively update the acquired knowledge. We describe our paradigm using an initial functional prototype, then provide two examples of use and early feedback from social scientists. We believe our clustering paradigm offers a novel constructive method to iteratively build knowledge while avoiding being overly influenced by the results of often-randomly selected black-box clustering algorithms.
has issue date
2020-05-06
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
887e3081c628fb481a9270a91fea71d676b0a926
resource representing a document's title
Integrating Prior Knowledge in Mixed Initiative Social Network Clustering
resource representing a document's body
covid:887e3081c628fb481a9270a91fea71d676b0a926#body_text
is
schema:about
of
named entity 'ALGORITHMS'
named entity 'SPECIFIED'
named entity 'GROUP'
named entity 'PRIOR'
named entity 'SPECIFICATION'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software