Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
A machine learning aided global diagnostic and comparative tool to assess effect of quarantine control in Covid-19 spread
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
A machine learning aided global diagnostic and comparative tool to assess effect of quarantine control in Covid-19 spread
Creator
Barbastathis, George
Dandekar, Raj
Rackauckas, Chris
source
ArXiv
abstract
We have developed a globally applicable diagnostic Covid-19 model by augmenting the classical SIR epidemiological model with a neural network module. Our model does not rely upon previous epidemics like SARS/MERS and all parameters are optimized via machine learning algorithms employed on publicly available Covid-19 data. The model decomposes the contributions to the infection timeseries to analyze and compare the role of quarantine control policies employed in highly affected regions of Europe, North America, South America and Asia in controlling the spread of the virus. For all continents considered, our results show a generally strong correlation between strengthening of the quarantine controls as learnt by the model and actions taken by the regions' respective governments. Finally, we have hosted our quarantine diagnosis results for the top 70 affected countries worldwide, on a public platform, which can be used for informed decision making by public health officials and researchers alike.
has issue date
2020-07-23
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
7dbf69147bbf57dcd8b2d8a95379787df452af9c
resource representing a document's title
A machine learning aided global diagnostic and comparative tool to assess effect of quarantine control in Covid-19 spread
resource representing a document's body
covid:7dbf69147bbf57dcd8b2d8a95379787df452af9c#body_text
is
schema:about
of
named entity 'Covid-19'
named entity 'controls'
named entity 'North America'
named entity 'employed'
named entity 'The'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software