Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning
Creator
Goswami, Anindya
Rajani, Sharan
Tanksale, Atharva
source
ArXiv
abstract
We propose three different data driven approaches for pricing European style call options using supervised machine-learning algorithms. The proposed approaches are tested on two stock market indices, NIFTY50 and BANKNIFTY from the Indian equity market. Although neither historical nor implied volatility is used as an input, the results show that the trained models have been able to capture the option pricing mechanism better than or similar to the Black Scholes formula for all the experiments. Our choice of scale free I/O allows us to train models using combined data of multiple different assets from a financial market. This not only allows the models to achieve far better generalization and predictive capability, but also solves the problem of paucity of data, the primary limitation of using machine learning techniques. We also illustrate the performance of the trained models in the period leading up to the 2020 Stock Market Crash, Jan 2019 to April 2020.
has issue date
2020-08-02
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
6edec9177333536bb1dfc83363cefba4bf0dc66b
resource representing a document's title
Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning
resource representing a document's body
covid:6edec9177333536bb1dfc83363cefba4bf0dc66b#body_text
is
schema:about
of
named entity 'experiments'
named entity 'tested'
named entity 'CRASH'
named entity 'FREE'
named entity 'MULTIPLE'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 7
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software