Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Predictors to use mobile apps for monitoring COVID-19 symptoms and contact tracing: A survey among Dutch citizens.
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Predictors to use mobile apps for monitoring COVID-19 symptoms and contact tracing: A survey among Dutch citizens.
Creator
Van Velsen, Lex
Den Ouden, Marjolein
Hurmuz, Marian
Jansen -Kosterink, Stephanie
source
MedRxiv
abstract
Introduction: eHealth applications have been recognized as a valuable tool to reduce COVID-19s effective reproduction number. In this paper, we report on an online survey among Dutch citizens with the goal to identify antecedents of acceptance of a mobile application for COVID-19 symptom recognition and monitoring, and a mobile application for contact tracing. Methods: Next to the demographics, the online survey contained questions focussing on perceived health, fear of COVID-19 and intention to use. We used snowball sampling via posts on social media and personal connections. To identify antecedents of acceptance of the two mobile applications we conducted multiple linear regression analyses. Results: In total, 238 Dutch adults completed the survey. Almost 60% of the responders were female and the average age was 45.6 years (SD=17.4). For the symptom app, the final model included the predictors age, attitude towards technology and fear of COVID-19. The model had an R2 of 0.141. The final model for the tracing app included the same predictors and had an R2 of 0.156. The main reason to use both mobile applications was to control the spread of the COVID-19 virus. Concerns about privacy was mentioned as the main reason not to use the mobile applications. Discussion: Age, attitude towards technology and fear of COVID-19 are important predictors of the acceptance of COVID-19 mobile applications for symptom recognition and monitoring and for contact tracing. These predictors should be taken into account during the development and implementation of these mobile applications to secure acceptance.
has issue date
2020-06-02
(
xsd:dateTime
)
bibo:doi
10.1101/2020.06.02.20113423
has license
medrxiv
sha1sum (hex)
6a4fdcd3c1898a5bc0eefe3a211e01898027ee2a
schema:url
https://doi.org/10.1101/2020.06.02.20113423
resource representing a document's title
Predictors to use mobile apps for monitoring COVID-19 symptoms and contact tracing: A survey among Dutch citizens.
resource representing a document's body
covid:6a4fdcd3c1898a5bc0eefe3a211e01898027ee2a#body_text
is
schema:about
of
named entity 'COVID-19'
named entity 'monitoring'
named entity 'number'
named entity 'applications'
named entity 'COVID-19'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software