Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Controlling nosocomial infection based on structure of hospital social networks
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Controlling nosocomial infection based on structure of hospital social networks
Creator
Masuda, Naoki
Ueno, Taro
source
ArXiv
abstract
Nosocomial infection raises a serious public health problem, as implied by the existence of pathogens characteristic to healthcare and hospital-mediated outbreaks of influenza and SARS. We simulate stochastic SIR dynamics on social networks, which are based on observations in a hospital in Tokyo, to explore effective containment strategies against nosocomial infection. The observed networks have hierarchical and modular structure. We show that healthcare workers, particularly medical doctors, are main vectors of diseases on these networks. Intervention methods that restrict interaction between medical doctors and their visits to different wards shrink the final epidemic size more than intervention methods that directly protect patients, such as isolating patients in single rooms. By the same token, vaccinating doctors with priority rather than patients or nurses is more effective. Finally, vaccinating individuals with large betweenness centrality is superior to vaccinating ones with large connectedness to others or randomly chosen individuals, as suggested by previous model studies. [The abstract of the manuscript has more information.]
has issue date
2008-03-13
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
5d7dc504177db9326327e5cc7417bfa045e0f8ad
resource representing a document's title
Controlling nosocomial infection based on structure of hospital social networks
resource representing a document's body
covid:5d7dc504177db9326327e5cc7417bfa045e0f8ad#body_text
is
schema:about
of
named entity 'right-skewed'
named entity 'Tokyo'
named entity 'medical doctors'
named entity 'public health'
named entity 'stochastic'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software