Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Modeling the dynamics of COVID19 spread during and after social distancing
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Modeling the dynamics of COVID19 spread during and after social distancing
Creator
Komarova, Natalia
Wodarz, Dominik
source
MedRxiv
abstract
Non-pharmaceutical intervention measures, such as social distancing, have so far been the only means to slow the spread of COVID19. In the United States, strict social distancing has resulted in different types infection dynamics. In some states, such as New York, extensive infection spread was followed by a pronounced decline of infection levels. In other states, such as California, less infection spread occurred before strict social distancing, and a different pattern was observed. Instead of a pronounced infection decline, a long-lasting plateau is evident, characterized by similar daily new infection levels. While these plateau dynamics cannot be readily reproduced with standard SIR infection models, we show that network models, in which individuals and their social contacts are explicitly tracked, can reproduce the plateau if network connections are cut due to social distancing measures. The reason is that in networks characterized by a degree of 2D spatial structure, infection tends to spread quadratically with time, but as edges are randomly removed, the infection spreads along nearly one-dimensional infection %22corridors%22, resulting in plateau dynamics. Interestingly, the plateau dynamics are predicted to eventually transition into an infection decline phase without any further increase in social distancing measures. Additionally, the models suggest that a potential second wave becomes significantly less pronounced if social distancing is only relaxed once the dynamics have transitioned to the decline phase. The network models analyzed here allow us to interpret and reconcile different infection dynamics during social distancing observed in various US states.
has issue date
2020-06-16
(
xsd:dateTime
)
bibo:doi
10.1101/2020.06.13.20130625
has license
medrxiv
sha1sum (hex)
54ffb8debe9f5ddb1e20c4fc649e87e94cfb2788
schema:url
https://doi.org/10.1101/2020.06.13.20130625
resource representing a document's title
Modeling the dynamics of COVID19 spread during and after social distancing
resource representing a document's body
covid:54ffb8debe9f5ddb1e20c4fc649e87e94cfb2788#body_text
is
schema:about
of
named entity 'reproduce'
named entity 'potential'
named entity 'quadratically'
named entity 'observed'
named entity 'DEGREE'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 6
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software