Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Quest: Practical and Oblivious Mitigation Strategies for COVID-19 using WiFi Datasets
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Quest: Practical and Oblivious Mitigation Strategies for COVID-19 using WiFi Datasets
Creator
Gupta, Peeyush
Mehrotra, Sharad
Panwar, Nisha
Sharma, Shantanu
Venkatasubramanian, Nalini
»more»
source
ArXiv
abstract
Contact tracing has emerged as one of the main mitigation strategies to prevent the spread of pandemics such as COVID-19. Recently, several efforts have been initiated to track individuals, their movements, and interactions using technologies, e.g., Bluetooth beacons, cellular data records, and smartphone applications. Such solutions are often intrusive, potentially violating individual privacy rights and are often subject to regulations (e.g., GDPR and CCPR) that mandate the need for opt-in policies to gather and use personal information. In this paper, we introduce Quest, a system that empowers organizations to observe individuals and spaces to implement policies for social distancing and contact tracing using WiFi connectivity data in a passive and privacy-preserving manner. The goal is to ensure the safety of employees and occupants at an organization, while protecting the privacy of all parties. Quest incorporates computationally- and information-theoretically-secure protocols that prevent adversaries from gaining knowledge of an individual's location history (based on WiFi data); it includes support for accurately identifying users who were in the vicinity of a confirmed patient, and then informing them via opt-in mechanisms. Quest supports a range of privacy-enabled applications to ensure adherence to social distancing, monitor the flow of people through spaces, identify potentially impacted regions, and raise exposure alerts. We describe the architecture, design choices, and implementation of the proposed security/privacy techniques in Quest. We, also, validate the practicality of Quest and evaluate it thoroughly via an actual campus-scale deployment at UC Irvine over a very large dataset of over 50M tuples.
has issue date
2020-05-05
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
5471cdc4f701cd7bb2edc6ec478251eaa270cdfc
resource representing a document's title
Quest: Practical and Oblivious Mitigation Strategies for COVID-19 using WiFi Datasets
resource representing a document's body
covid:5471cdc4f701cd7bb2edc6ec478251eaa270cdfc#body_text
is
schema:about
of
named entity 'intrusive'
named entity 'QUEST'
named entity 'strategies'
named entity 'smartphone'
named entity 'The goal'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software