Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Identifying Key Determinants of SARS-CoV-2/ACE2 Tight Interaction
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Identifying Key Determinants of SARS-CoV-2/ACE2 Tight Interaction
Creator
Jha, Ramesh
Ngo, Van
source
BioRxiv
abstract
SARS-CoV-2 virus, the causative agent of Covid-19, has fired up a global pandemic. The virus interacts with the human receptor angiotensin-converting enzyme 2 (ACE2) for invasion via receptor binding domain (RBD) on its spike protein. To provide a deeper understanding of this interaction, we performed microsecond simulations of the RBD-ACE2 complex for SARS- CoV-2 and compared it with the closely related SARS-CoV discovered in 2003. We show residues in the RBD of SARS-CoV-2 that were mutated from SARS-CoV, collectively help make RBD anchor much stronger to the N-terminal part of ACE2 than the corresponding residues on RBD of SARS-CoV. This would result in reduced dissociation rate of SARS-CoV-2 from human recep- tor protein compared to SARS-CoV. This phenomenon was consistently observed in simulations beyond 500 ns and was reproducible across different force fields. Altogether, our study shed light on the key residues and their dynamics at the virus spike and human receptor binding interface and advance our knowledge for the development of diagnostics and therapeutics to combat the pandemic efficiently.
has issue date
2020-07-13
(
xsd:dateTime
)
bibo:doi
10.1101/2020.07.13.199562
has license
biorxiv
sha1sum (hex)
52b60c752f34232e51b18575942dddfaf5475e32
schema:url
https://doi.org/10.1101/2020.07.13.199562
resource representing a document's title
Identifying Key Determinants of SARS-CoV-2/ACE2 Tight Interaction
schema:publication
bioRxiv
resource representing a document's body
covid:52b60c752f34232e51b18575942dddfaf5475e32#body_text
is
schema:about
of
named entity 'efficiently'
named entity 'SARS-CoV'
named entity 'anchor'
named entity 'RBD'
named entity 'residues'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software