Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
“Amantadine disrupts lysosomal gene expression; potential therapy for COVID19”
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
“Amantadine disrupts lysosomal gene expression; potential therapy for COVID19”
Creator
Polymeropoulos, Mihael
Przychodzen, Bart
Smieszek, Sandra
source
BioRxiv
abstract
SARS-coronavirus 2 is the causal agent of the COVID-19 outbreak. SARS-Cov-2 entry into a cell is dependent upon binding of the viral spike (S) protein to cellular receptor and on cleavage of the spike protein by the host cell proteases such as Cathepsin L and Cathepsin B. CTSL/B are crucial elements of lysosomal pathway and both enzymes are almost exclusively located in the lysosomes.CTSL disruption offers potential for CoVID-19 therapies. The mechanisms of disruption include: decreasing expression of CTSL, direct inhibition of CTSL activity and affecting the conditions of CTSL environment (increase pH in lysosomes). We have conducted a high throughput drug screen gene expression analysis to identify compounds that would downregulate the expression of CTSL/CTSB. One of the top significant results shown to downregulate the expression of the CTSL gene is Amantadine. Amantadine was approved by the US Food and Drug Administration in 1968 as a prophylactic agent for influenza and later for Parkinson’s disease. It is available as a generic drug.. Amantadine in addition to downregulating CTSL appears to further disrupt lysosomal pathway, hence interfering with the capacity of the virus to replicate. It acts as a lysosomotropic agent altering the CTSL functional environment. We hypothesize that Amantadine could decrease the viral load in SARS-CoV-2 positive patients and as such it may serve as a potent therapeutic decreasing the replication and infectivity of the virus likely leading to better clinical outcomes. Clinical studies will be needed to examine the therapeutic utility of amantadine in COVID-19 infection.
has issue date
2020-04-05
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.05.026187
has license
biorxiv
sha1sum (hex)
4e3f17680dc66471a7fbbccf516b61659c0f0cf6
schema:url
https://doi.org/10.1101/2020.04.05.026187
resource representing a document's title
“Amantadine disrupts lysosomal gene expression; potential therapy for COVID19”
schema:publication
bioRxiv
resource representing a document's body
covid:4e3f17680dc66471a7fbbccf516b61659c0f0cf6#body_text
is
schema:about
of
named entity 'cell'
named entity 'causal'
named entity 'potential'
named entity 'host'
named entity 'dependent'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software