Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Importance of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19 Case Study
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Importance of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19 Case Study
Creator
Backenköhler, Michael
Großmann, Gerrit
Wolf, Verena
source
MedRxiv
abstract
In the recent COVID-19 pandemic, computer simulations are used to predict the evolution of the virus propagation and to evaluate the prospective effectiveness of non-pharmaceutical interventions. As such, the corresponding mathematical models and their simulations are central tools to guide political decision-making. Typically, ODE-based models are considered, in which fractions of infected and healthy individuals change deterministically and continuously over time. In this work, we translate an ODE-based COVID-19 spreading model from literature to a stochastic multi-agent system and use a contact network to mimic complex interaction structures. We observe a large dependency of the epidemic's dynamics on the structure of the underlying contact graph, which is not adequately captured by existing ODE-models. For instance, existence of super-spreaders leads to a higher infection peak but a lower death toll compared to interaction structures without super-spreaders. Overall, we observe that the interaction structure has a crucial impact on the spreading dynamics, which exceeds the effects of other parameters such as the basic reproduction number R0. We conclude that deterministic models fitted to COVID-19 outbreak data have limited predictive power or may even lead to wrong conclusions while stochastic models taking interaction structure into account offer different and probably more realistic epidemiological insights.
has issue date
2020-05-08
(
xsd:dateTime
)
bibo:doi
10.1101/2020.05.05.20091736
has license
medrxiv
sha1sum (hex)
4a98fffc76d3bb911d18e173b923d12580f89769
schema:url
https://doi.org/10.1101/2020.05.05.20091736
resource representing a document's title
Importance of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19 Case Study
resource representing a document's body
covid:4a98fffc76d3bb911d18e173b923d12580f89769#body_text
is
schema:about
of
named entity 'individuals'
named entity 'BASED'
named entity 'EVALUATE'
named entity 'INFECTED'
named entity 'PROPAGATION'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software