Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Machine learning dimensionality reduction for heart rate n-variability (HRnV) based risk stratification of chest pain patients in the emergency department
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Machine learning dimensionality reduction for heart rate n-variability (HRnV) based risk stratification of chest pain patients in the emergency department
Creator
Liu, Nan
Ong, Hock
Chee, Marcel
Eng, Marcus
Fu, Andrew
»more»
source
MedRxiv
abstract
Background: Chest pain is among the most common presenting complaints in the emergency department (ED). Swift and accurate risk stratification of chest pain patients in the ED may improve patient outcomes and reduce unnecessary costs. Traditional logistic regression with stepwise variable selection has been used to build risk prediction models for ED chest pain patients. In this study, we aimed to investigate if machine learning dimensionality reduction methods can achieve superior performance than the stepwise approach in deriving risk stratification models. Methods: A retrospective analysis was conducted on the data of patients >20 years old who presented to the ED of Singapore General Hospital with chest pain between September 2010 and July 2015. Variables used included demographics, medical history, laboratory findings, heart rate variability (HRV), and HRnV parameters calculated from five to six-minute electrocardiograms (ECGs). The primary outcome was 30-day major adverse cardiac events (MACE), which included death, acute myocardial infarction, and revascularization. Candidate variables identified using univariable analysis were then used to generate the stepwise logistic regression model and eight machine learning dimensionality reduction prediction models. A separate set of models was derived by excluding troponin. Receiver operating characteristic (ROC) and calibration analysis was used to compare model performance. Results: 795 patients were included in the analysis, of which 247 (31%) met the primary outcome of 30-day MACE. Patients with MACE were older and more likely to be male. All eight dimensionality reduction methods marginally but non-significantly outperformed stepwise variable selection; The multidimensional scaling algorithm performed the best with an area under the curve (AUC) of 0.901. All HRnV-based models generated in this study outperformed several existing clinical scores in ROC analysis. Conclusions: HRnV-based models using stepwise logistic regression performed better than existing chest pain scores for predicting MACE, with only marginal improvements using machine learning dimensionality reduction. Moreover, traditional stepwise approach benefits from model transparency and interpretability; in comparison, machine learning dimensionality reduction models are black boxes, making them difficult to explain in clinical practice.
has issue date
2020-07-06
(
xsd:dateTime
)
bibo:doi
10.1101/2020.07.05.20146571
has license
medrxiv
sha1sum (hex)
457a01aa09b4ddc2c390c0ac7654982d021f576e
schema:url
https://doi.org/10.1101/2020.07.05.20146571
resource representing a document's title
Machine learning dimensionality reduction for heart rate n-variability (HRnV) based risk stratification of chest pain patients in the emergency department
resource representing a document's body
covid:457a01aa09b4ddc2c390c0ac7654982d021f576e#body_text
is
schema:about
of
named entity 'author'
named entity 'International'
named entity 'presented'
named entity 'Background'
named entity 'stepwise'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 8
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software