Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
COVID Faster R-CNN: A Novel Framework to Diagnose Novel Coronavirus Disease (COVID-19) in X-Ray Images
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
COVID Faster R-CNN: A Novel Framework to Diagnose Novel Coronavirus Disease (COVID-19) in X-Ray Images
Creator
Rahman, Md
Kumar Dey, Samrat
Shibly, Kabid
Tahzib-Ul-Islam,
source
MedRxiv
abstract
COVID-19 or novel coronavirus disease, which has already been declared as a worldwide pandemic, at first had an outbreak in a small town of China, named Wuhan. More than two hundred countries around the world have already been affected by this severe virus as it spreads by human interaction. Moreover, the symptoms of novel coronavirus are quite similar to the general flu. Screening of infected patients is considered as a critical step in the fight against COVID-19. Therefore, it is highly relevant to recognize positive cases as early as possible to avoid further spreading of this epidemic. However, there are several methods to detect COVID-19 positive patients, which are typically performed based on respiratory samples and among them one of the critical approach which is treated as radiology imaging or X-Ray imaging. Recent findings from X-Ray imaging techniques suggest that such images contain relevant information about the SARS-CoV-2 virus. In this article, we have introduced a Deep Neural Network (DNN) based Faster Regions with Convolutional Neural Networks (Faster R-CNN) framework to detect COVID-19 patients from chest X-Ray images using available open-source dataset. Our proposed approach provides a classification accuracy of 97.36%, 97.65% of sensitivity, and a precision of 99.28%. Therefore, we believe this proposed method might be of assistance for health professionals to validate their initial assessment towards COVID-19 patients.
has issue date
2020-05-19
(
xsd:dateTime
)
bibo:doi
10.1101/2020.05.14.20101873
has license
medrxiv
sha1sum (hex)
40feb27a116a0192b40421d2303e9f826ec1b4d9
schema:url
https://doi.org/10.1101/2020.05.14.20101873
resource representing a document's title
COVID Faster R-CNN: A Novel Framework to Diagnose Novel Coronavirus Disease (COVID-19) in X-Ray Images
resource representing a document's body
covid:40feb27a116a0192b40421d2303e9f826ec1b4d9#body_text
is
schema:about
of
named entity 'copyright holder'
named entity 'Chest X-Ray'
named entity 'COVID-19'
named entity 'peer review'
named entity 'COVID-19'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 2
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software