Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Development and Validation of a Web-Based Severe COVID-19 Risk Prediction Model
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Development and Validation of a Web-Based Severe COVID-19 Risk Prediction Model
Creator
Baram, Michael
Woo, Sang
Riley, Joshua
Ackermann, Lily
Chalikonda, Divya
»more»
source
MedRxiv
abstract
Background: Coronavirus disease 2019 (COVID-19) carries high morbidity and mortality globally. Identification of patients at risk for clinical deterioration upon presentation would aid in triaging, prognostication, and allocation of resources and experimental treatments. Research Question: Can we develop and validate a web-based risk prediction model for identification of patients who may develop severe COVID-19, defined as intensive care unit (ICU) admission, mechanical ventilation, and/or death? Methods: This retrospective cohort study reviewed 415 patients admitted to a large urban academic medical center and community hospitals. Covariates included demographic, clinical, and laboratory data. The independent association of predictors with severe COVID-19 was determined using multivariable logistic regression. A derivation cohort (n=311, 75%) was used to develop the prediction models. The models were tested by a validation cohort (n=104, 25%). Results: The median age was 66 years (Interquartile range [IQR] 54-77) and the majority were male (55%) and non-White (65.8%). The 14-day severe COVID-19 rate was 39.3%; 31.7% required ICU, 24.6% mechanical ventilation, and 21.2% died. Machine learning algorithms and clinical judgment were used to improve model performance and clinical utility, resulting in the selection of eight predictors: age, sex, dyspnea, diabetes mellitus, troponin, C-reactive protein, D-dimer, and aspartate aminotransferase. The discriminative ability was excellent for both the severe COVID-19 (training area under the curve [AUC]=0.82, validation AUC=0.82) and mortality (training AUC= 0.85, validation AUC=0.81) models. These models were incorporated into a mobile-friendly website. Interpretation: This web-based risk prediction model can be used at the bedside for prediction of severe COVID-19 using data mostly available at the time of presentation.
has issue date
2020-07-18
(
xsd:dateTime
)
bibo:doi
10.1101/2020.07.16.20155739
has license
medrxiv
sha1sum (hex)
3b909e7681826cb51d2d9e6e85855fde1533cace
schema:url
https://doi.org/10.1101/2020.07.16.20155739
resource representing a document's title
Development and Validation of a Web-Based Severe COVID-19 Risk Prediction Model
resource representing a document's body
covid:3b909e7681826cb51d2d9e6e85855fde1533cace#body_text
is
schema:about
of
named entity 'globally'
named entity 'Risk'
named entity 'COVID-19'
named entity 'presentation'
named entity 'triaging'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software