Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Cross-Cultural Polarity and Emotion Detection Using Sentiment Analysis and Deep Learning -- a Case Study on COVID-19
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Cross-Cultural Polarity and Emotion Detection Using Sentiment Analysis and Deep Learning -- a Case Study on COVID-19
Creator
Bhatra, Rakhi
Doudpota, Sher
Imran, Ali
Kastrati, Zenun
source
ArXiv
abstract
How different cultures react and respond given a crisis is predominant in a society's norms and political will to combat the situation. Often the decisions made are necessitated by events, social pressure, or the need of the hour, which may not represent the will of the nation. While some are pleased with it, others might show resentment. Coronavirus (COVID-19) brought a mix of similar emotions from the nations towards the decisions taken by their respective governments. Social media was bombarded with posts containing both positive and negative sentiments on the COVID-19, pandemic, lockdown, hashtags past couple of months. Despite geographically close, many neighboring countries reacted differently to one another. For instance, Denmark and Sweden, which share many similarities, stood poles apart on the decision taken by their respective governments. Yet, their nation's support was mostly unanimous, unlike the South Asian neighboring countries where people showed a lot of anxiety and resentment. This study tends to detect and analyze sentiment polarity and emotions demonstrated during the initial phase of the pandemic and the lockdown period employing natural language processing (NLP) and deep learning techniques on Twitter posts. Deep long short-term memory (LSTM) models used for estimating the sentiment polarity and emotions from extracted tweets have been trained to achieve state-of-the-art accuracy on the sentiment140 dataset. The use of emoticons showed a unique and novel way of validating the supervised deep learning models on tweets extracted from Twitter.
has issue date
2020-08-23
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
2b7bf7d309d5b7e2c16feb83d0ebdcb0d3363d76
resource representing a document's title
Cross-Cultural Polarity and Emotion Detection Using Sentiment Analysis and Deep Learning -- a Case Study on COVID-19
resource representing a document's body
covid:2b7bf7d309d5b7e2c16feb83d0ebdcb0d3363d76#body_text
is
schema:about
of
named entity 'Tweets'
named entity 'predominant'
named entity 'polarity'
named entity 'phase'
named entity 'positive'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 7
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software