Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
An agent-based epidemic model REINA for COVID-19 to identify destructive policies
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
An agent-based epidemic model REINA for COVID-19 to identify destructive policies
Creator
Tuomisto, Jouni
Yrjölä, Juha
source
MedRxiv
abstract
Background. Countries have adopted disparate policies in tackling the COVID-19 coronavirus pandemic. For example, South Korea started a vigorous campaign to suppress the virus by testing patients with respiratory symptoms and tracing and isolating all their contacts, and many European countries are trying to slow down the spread of the virus with varying degrees of shutdowns. There is clearly a need for a model that can realistically simulate different policy actions and their impacts on the disease and health care capacity in a country or a region. Specifically, there is a need to identify destructive policies, i.e. policies that are, based on scientific knowledge, worse than an alternative and should not be implemented. Methods. We developed an agent-based model (REINA) using Python and accelerated it by the Cython optimising static compiler. It follows a population over time at individual level at different stages of the disease and estimates the number of patients in hospitals and in intensive care. It estimates death rates and counts based on the treatment available. Any number of interventions can be added on the timeline from a selection including e.g. physical isolation, testing and tracing, and controlling the amount of cases entering the area. The model has open source code and runs online. Results. The model uses the demographics of the Helsinki University Hospital region (1.6 million inhabitants). A mitigation strategy aims to slow down the spread of the epidemic to maintain the hospital capacity by implementing mobility restrictions. A suppression strategy initially consists of the same restrictions but also aggressive testing, tracing, and isolating all coronavirus positive patients and their contacts. The modelling starting point is 2020-02-18. The strategies follow the actual situation until 2020-04-06 and then diverge. The default mitigation scenario with variable 30−40% mobility reduction appears to delay the peak of the epidemic (as intended) but not suppress the disease. In the suppression strategy, active testing and tracing of patients with symptoms and their contacts is implemented in addition to 20−25% mobility reduction. This results in a reduction of the cumulative number of infected individuals from 820 000 to 80 000 and the number of deaths from 6000 to only 640, when compared with the mitigation strategy (during the first year of the epidemic). Discussion. The agent-based model (REINA) can be used to simulate epidemic outcomes for various types of policy actions on a timeline. Our results lend support to the strategy of combining comprehensive testing, contact tracing and targeted isolation measures with social isolation measures. While social isolation is important in the early stages to prevent explosive growth, relying on social isolation alone (the mitigation strategy) appears to be a destructive policy. The open-source nature of the model facilitates rapid further development. The flexibility of the modelling logic supports the future implementation of several already identified refinements in terms of more realistic population models and new types of more specific policy interventions. Improving estimates of epidemic parameters will make it possible to improve modelling accuracy further.
has issue date
2020-04-14
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.09.20047498
has license
medrxiv
sha1sum (hex)
1fdcb519802d1fec8d0092426bcf24b612a4b6ca
schema:url
https://doi.org/10.1101/2020.04.09.20047498
resource representing a document's title
An agent-based epidemic model REINA for COVID-19 to identify destructive policies
resource representing a document's body
covid:1fdcb519802d1fec8d0092426bcf24b612a4b6ca#body_text
is
schema:about
of
named entity 'SPREAD'
named entity 'AIMS'
named entity 'TRY'
named entity 'LEVEL'
named entity 'SIMULATE'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software