Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Covid-19 and Inequity: A comparative spatial analysis of New York City and Chicago hot spots
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Covid-19 and Inequity: A comparative spatial analysis of New York City and Chicago hot spots
Creator
Maroko, Andrew
Nash, Denis
Pavilonis, Brian
source
MedRxiv
abstract
There have been numerous reports that the impact of the ongoing COVID-19 epidemic has disproportionately impacted traditionally vulnerable communities, including well-researched social determinants of health, such as racial and ethnic minorities, migrants, and the economically challenged. The goal of this ecological cross-sectional study is to examine the demographic and economic nature of spatial hot and cold spots of SARS-CoV-2 rates in New York City and Chicago as of April 13, 2020. In both cities, cold spots (clusters of low SARS-CoV-2 rate ZIP code tabulation areas) demonstrated typical protective factors associated with the social determinants of health and the ability to social distance. These neighborhoods tended to be wealthier, have higher educational attainment, higher proportions of non-Hispanic white residents, and more workers in managerial occupations. Hot spots (clusters of high SARS-CoV-2 rate ZIP code tabulation areas) also had similarities, such as lower rates of college graduates and higher proportions of people of color. It also appears to be larger households (more people per household), rather than overall population density, that may to be a more strongly associated with hot spots. Findings suggest important differences between the cities' hot spots as well. They can be generalized by describing the NYC hot spots as working-class and middle-income communities, perhaps indicative of service workers and other occupations (including those classified as %22essential services%22 during the pandemic) that may not require a college degree but pay wages above poverty levels. Chicago's hot spot neighborhoods, on the other hand, are among the city's most vulnerable, low-income neighborhoods with extremely high rates of poverty, unemployment, and non-Hispanic Black residents.
has issue date
2020-04-24
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.21.20074468
has license
medrxiv
sha1sum (hex)
196287728add05a283d7cd6d02bff1804c99e5a8
schema:url
https://doi.org/10.1101/2020.04.21.20074468
resource representing a document's title
Covid-19 and Inequity: A comparative spatial analysis of New York City and Chicago hot spots
resource representing a document's body
covid:196287728add05a283d7cd6d02bff1804c99e5a8#body_text
is
schema:about
of
named entity 'Covid-19'
named entity 'SPOTS'
named entity 'IMPACT'
named entity 'ongoing'
named entity 'spatial'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software