Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Sentiment Analysis: Detecting Valence, Emotions, and Other Affectual States from Text
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Sentiment Analysis: Detecting Valence, Emotions, and Other Affectual States from Text
Creator
Mohammad, Saif
source
ArXiv
abstract
Recent advances in machine learning have led to computer systems that are human-like in behaviour. Sentiment analysis, the automatic determination of emotions in text, is allowing us to capitalize on substantial previously unattainable opportunities in commerce, public health, government policy, social sciences, and art. Further, analysis of emotions in text, from news to social media posts, is improving our understanding of not just how people convey emotions through language but also how emotions shape our behaviour. This article presents a sweeping overview of sentiment analysis research that includes: the origins of the field, the rich landscape of tasks, challenges, a survey of the methods and resources used, and applications. We also discuss discuss how, without careful fore-thought, sentiment analysis has the potential for harmful outcomes. We outline the latest lines of research in pursuit of fairness in sentiment analysis.
has issue date
2020-05-25
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
11c51eee0040547cfa8d49a4cc753d00d30beb98
resource representing a document's title
Sentiment Analysis: Detecting Valence, Emotions, and Other Affectual States from Text
resource representing a document's body
covid:11c51eee0040547cfa8d49a4cc753d00d30beb98#body_text
is
schema:about
of
named entity 'Further'
named entity 'automatic'
named entity 'landscape'
named entity 'determination'
named entity 'policy'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 8
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software