Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Optimal time frequency analysis for biological data - pyBOAT
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Optimal time frequency analysis for biological data - pyBOAT
Creator
Granada, Adrián
Mönke, Gregor
Schmal, Christoph
Sorgenfrei, Frieda
source
BioRxiv
abstract
Methods for the quantification of rhythmic biological signals have been essential for the discovery of function and design of biological oscillators. Advances in live measurements have allowed recordings of unprecedented resolution revealing a new world of complex heterogeneous oscillations with multiple noisy non-stationary features. However, our understanding of the underlying mechanisms regulating these oscillations has been lagging behind, partially due to the lack of simple tools to reliably quantify these complex non-stationary features. With this challenge in mind, we have developed pyBOAT, a Python-based fully automatic stand-alone software that integrates multiple steps of non-stationary oscillatory time series analysis into an easy-to-use graphical user interface. pyBOAT implements continuous wavelet analysis which is specifically designed to reveal time-dependent features. In this work we illustrate the advantages of our tool by analyzing complex non-stationary time-series profiles. Our approach integrates data-visualization, optimized sinc-filter detrending, amplitude envelope removal and a subsequent continuous-wavelet based time-frequency analysis. Finally, using analytical considerations and numerical simulations we discuss unexpected pitfalls in commonly used smoothing and detrending operations.
has issue date
2020-06-04
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.29.067744
has license
biorxiv
sha1sum (hex)
0ad95c7b1ad6f923d80105aee84c29f68bf92c3b
schema:url
https://doi.org/10.1101/2020.04.29.067744
resource representing a document's title
Optimal time frequency analysis for biological data - pyBOAT
schema:publication
bioRxiv
resource representing a document's body
covid:0ad95c7b1ad6f923d80105aee84c29f68bf92c3b#body_text
is
schema:about
of
named entity 'complex'
named entity 'wavelet'
named entity 'non-stationary'
named entity 'signals'
named entity 'amplitude'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 7
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software