Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Backtesting the predictability of COVID-19
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Backtesting the predictability of COVID-19
Creator
Müller, Mathias
Ai, H2o
Ambati, Srisatish
Gordeev, Dmitry
Michailidis, Marios
»more»
source
ArXiv
abstract
The advent of the COVID-19 pandemic has instigated unprecedented changes in many countries around the globe, putting a significant burden on the health sectors, affecting the macro economic conditions, and altering social interactions amongst the population. In response, the academic community has produced multiple forecasting models, approaches and algorithms to best predict the different indicators of COVID-19, such as the number of confirmed infected cases. Yet, researchers had little to no historical information about the pandemic at their disposal in order to inform their forecasting methods. Our work studies the predictive performance of models at various stages of the pandemic to better understand their fundamental uncertainty and the impact of data availability on such forecasts. We use historical data of COVID-19 infections from 253 regions from the period of 22nd January 2020 until 22nd June 2020 to predict, through a rolling window backtesting framework, the cumulative number of infected cases for the next 7 and 28 days. We implement three simple models to track the root mean squared logarithmic error in this 6-month span, a baseline model that always predicts the last known value of the cumulative confirmed cases, a power growth model and an epidemiological model called SEIRD. Prediction errors are substantially higher in early stages of the pandemic, resulting from limited data. Throughout the course of the pandemic, errors regress slowly, but steadily. The more confirmed cases a country exhibits at any point in time, the lower the error in forecasting future confirmed cases. We emphasize the significance of having a rigorous backtesting framework to accurately assess the predictive power of such models at any point in time during the outbreak which in turn can be used to assign the right level of certainty to these forecasts and facilitate better planning.
has issue date
2020-07-22
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
08e7d171537078e00c356ca87f9910cd953171b4
resource representing a document's title
Backtesting the predictability of COVID-19
resource representing a document's body
covid:08e7d171537078e00c356ca87f9910cd953171b4#body_text
is
schema:about
of
named entity 'sectors'
named entity 'regress'
named entity 'turn'
named entity 'measures'
named entity 'forecasting methods'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 6
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software