Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Digital image processing with deep learning for automated cutting tool wear detection
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Digital image processing with deep learning for automated cutting tool wear detection
Creator
Augspurger, Thorsten
Bergs, Thomas
Gupta, Pranjul
Holst, Carsten
source
Elsevier
abstract
Abstract Tool wear is a cost driver in the metal cutting industry. Besides costs for the cutting tools themselves, further costs appear - equipment downtime for tool changes, reworking of damaged surfaces, scrap parts or damages to the machine tool itself in the worst case. Consequently, tools need to be exchanged on a regular basis or at a defined tool wear state. In order to detect and monitor the tool wear state different approaches are possible. In this publication, a deep learning approach for image processing is investigated in order to quantify the tool wear state. In a first step, a Convolutional Neural Networks (CNN) is trained for cutting tool type classification. This works well with an accuracy of 95.6% on the test dataset. Finally, a Fully Convolutional Network (FCN) for semantic segmentation is trained on individual tool type datasets (ball end mill, end mill, drills and inserts) and a mixed dataset to detect worn areas on the microscopic tool images. The accuracy metric for this kind of task, Intersect over Union (IoU), is around 0.7 for all networks on the test dataset. This paper contributes to the perspective of a fully automated cutting tool wear analysis method using machine tool integrated microscopes in the scientific and industrial environment.
has issue date
2020-12-31
(
xsd:dateTime
)
bibo:doi
10.1016/j.promfg.2020.05.134
has license
els-covid
sha1sum (hex)
0876564f0b34371e6a29a280685fa7f22f62d55b
schema:url
https://doi.org/10.1016/j.promfg.2020.05.134
resource representing a document's title
Digital image processing with deep learning for automated cutting tool wear detection
schema:publication
Procedia Manufacturing
resource representing a document's body
covid:0876564f0b34371e6a29a280685fa7f22f62d55b#body_text
is
schema:about
of
named entity 'cost driver'
named entity 'test'
named entity 'damaged'
named entity 'type'
named entity 'Digital image processing'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 6
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software