Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
The Monte Carlo Transformer: a stochastic self-attention model for sequence prediction
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
The Monte Carlo Transformer: a stochastic self-attention model for sequence prediction
Creator
Le Corff, Sylvain
Martin, Alice
Ollion, Charles
Pietquin, Olivier
Samovar, ∓
»more»
source
ArXiv
abstract
This paper introduces the Sequential Monte Carlo Transformer, an original approach that naturally captures the observations distribution in a recurrent architecture. The keys, queries, values and attention vectors of the network are considered as the unobserved stochastic states of its hidden structure. This generative model is such that at each time step the received observation is a random function of these past states in a given attention window. In this general state-space setting, we use Sequential Monte Carlo methods to approximate the posterior distributions of the states given the observations, and then to estimate the gradient of the log-likelihood. We thus propose a generative model providing a predictive distribution, instead of a single-point estimate.
has issue date
2020-07-15
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
08687b31e7eca10e98d3aafbbb12f4e8a5149e0b
resource representing a document's title
The Monte Carlo Transformer: a stochastic self-attention model for sequence prediction
resource representing a document's body
covid:08687b31e7eca10e98d3aafbbb12f4e8a5149e0b#body_text
is
schema:about
of
named entity 'structure'
named entity 'received'
named entity 'sequence'
named entity 'FUNCTION'
named entity 'PAST'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software