Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Mathematical and Computer Modeling of COVID-19 Transmission Dynamics in Bulgaria by Time-depended Inverse SEIR Model
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Mathematical and Computer Modeling of COVID-19 Transmission Dynamics in Bulgaria by Time-depended Inverse SEIR Model
source
ArXiv
abstract
In this paper we explore a time-depended SEIR model, in which the dynamics of the infection in four groups from a selected target group (population), divided according to the infection, are modeled by a system of nonlinear ordinary differential equations. Several basic parameters are involved in the model: coefficients of infection rate, incubation rate, recovery rate. The coefficients are adaptable to each specific infection, for each individual country, and depend on the measures to limit the spread of the infection and the effectiveness of the methods of treatment of the infected people in the respective country. If such coefficients are known, solving the nonlinear system is possible to be able to make some hypotheses for the development of the epidemic. This is the reason for using Bulgarian COVID-19 data to first of all, solve the so-called%22inverse problem%22and to find the parameters of the current situation. Reverse logic is initially used to determine the parameters of the model as a function of time, followed by computer solution of the problem. Namely, this means predicting the future behavior of these parameters, and finding (and as a consequence applying mass-scale measures, e.g., distancing, disinfection, limitation of public events), a suitable scenario for the change in the proportion of the numbers of the four studied groups in the future. In fact, based on these results we model the COVID-19 transmission dynamics in Bulgaria and make a two-week forecast for the numbers of new cases per day, active cases and recovered individuals. Such model, as we show, has been successful for prediction analysis in the Bulgarian situation. We also provide multiple examples of numerical experiments with visualization of the results.
has issue date
2020-08-20
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
07978674ca0f754d325bb0dea4d2ac026359773c
resource representing a document's title
Mathematical and Computer Modeling of COVID-19 Transmission Dynamics in Bulgaria by Time-depended Inverse SEIR Model
resource representing a document's body
covid:07978674ca0f754d325bb0dea4d2ac026359773c#body_text
is
schema:about
of
named entity 'healthcare systems'
named entity 'COVID-19'
named entity 'computer'
named entity 'numbers'
named entity 'future'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 6
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software