Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Classification of Coronavirus Images using Shrunken Features
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Classification of Coronavirus Images using Shrunken Features
Creator
Barstugan, Mucahid
Ozkaya, Umut
Ozturk, Saban
source
MedRxiv
abstract
Necessary screenings must be performed to control the spread of the Corona Virus (COVID-19) in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the wrong test results led the researchers to focus on different fields. Fast and accurate diagnoses are essential for effective interventions with COVID-19. The information obtained by using X-ray and Computed Tomography (CT) images is vital in making clinical diagnoses. Therefore it was aimed to develop a machine learning method for the detection of viral epidemics by analyzing X-ray images. In this study, images belonging to 6 situations, including coronavirus images, are classified. Since the number of images in the dataset is deficient and unbalanced, it is more convenient to analyze these images with hand-crafted feature extraction methods. For this purpose, firstly, all the images in the dataset are extracted with the help of four feature extraction algorithms. These extracted features are combined in raw form. The unbalanced data problem is eliminated by producing feature vectors with the SMOTE algorithm. Finally, the feature vector is reduced in size by using a stacked auto-encoder and principal component analysis to remove interconnected features in the feature vector. According to the obtained results, it is seen that the proposed method has leveraging performance, especially in order to make the diagnosis of COVID-19 in a short time and effectively.
has issue date
2020-04-06
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.03.20048868
has license
medrxiv
sha1sum (hex)
04a548ac23887bab6f10c13545a365b9fdb20803
schema:url
https://doi.org/10.1101/2020.04.03.20048868
resource representing a document's title
Classification of Coronavirus Images using Shrunken Features
resource representing a document's body
covid:04a548ac23887bab6f10c13545a365b9fdb20803#body_text
is
schema:about
of
named entity 'control'
named entity 'X-ray'
named entity 'develop'
named entity 'stacked'
named entity 'algorithm'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software