Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
EXPLAINABLE-BY-DESIGN APPROACH FOR COVID-19 CLASSIFICATION VIA CT-SCAN
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
EXPLAINABLE-BY-DESIGN APPROACH FOR COVID-19 CLASSIFICATION VIA CT-SCAN
Creator
Angelov, Plamen
Soares, Eduardo
source
MedRxiv
abstract
The COVID-19 disease has widely spread all over the world since the beginning of 2020. On January 30, 2020 the World Health Organization (WHO) declared a global health emergency. At the time of writing this paper the number of infected about 2 million people worldwide and took over 125,000 lives, the advanced public health systems of European countries as well as of USA were overwhelmed. In this paper, we propose an eXplainable Deep Learning approach to detect COVID-19 from computer tomography (CT) - Scan images. The rapid detection of any COVID-19 case is of supreme importance to ensure timely treatment. From a public health perspective, rapid patient isolation is also extremely important to curtail the rapid spread of the disease. From this point of view the proposed method offers an easy to use and understand tool to the front-line medics. It is of huge importance not only the statistical accuracy and other measures, but also the ability to understand and interpret how the decision was made. The results demonstrate that the proposed approach is able to surpass the other published results which were using standard Deep Neural Network in terms of performance. Moreover, it produces highly interpretable results which may be helpful for the early detection of the disease by specialists.
has issue date
2020-04-29
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.24.20078584
has license
medrxiv
sha1sum (hex)
02ee9da0a14f56a8aad930bbdc3d75a6ab2bd16f
schema:url
https://doi.org/10.1101/2020.04.24.20078584
resource representing a document's title
EXPLAINABLE-BY-DESIGN APPROACH FOR COVID-19 CLASSIFICATION VIA CT-SCAN
resource representing a document's body
covid:02ee9da0a14f56a8aad930bbdc3d75a6ab2bd16f#body_text
is
schema:about
of
named entity 'timely'
named entity 'SCAN'
named entity 'PERFORMANCE'
named entity 'EASY'
named entity 'EMERGENCY'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software